Transient analysis of the canine cerebrovascular response to carbon dioxide.

نویسندگان

  • D A Wilson
  • R J Traystman
  • C E Rapela
چکیده

Cerebral venous outflow and carbon dioxide transients were studied during five different transitional states: (1) on and off 10% carbon dioxide breathing, (2) on and off hyperventilation, (3) on 7% carbon dioxide breathing, (4) on 10% carbon dioxide breathing initiated from 7% carbon dioxide breathing, and (5) on 10% carbon dioxide breathing initiated during intracarotid papaverine infusion, in pentobarbital anesthetized, paralyzed, mechanically ventilated dogs. Plots of the temporal relationships between these variables indicated that cerebral blood flow is closely related with cerebral venous carbon dioxide tension but not arterial carbon dioxide tension. The rate at which flow changed upon transition from one steady state to another was phase dependent, in that longer times were required to establish stable conditions in the on phase than in the off phase. The magnitude of the maximum rates of change in cerebral blood flow achieved during transition was influenced both by the size of the forcing function and the level of flow present at the time the response was initiated. Directional changes had no effect upon the maximum rate of the flow change as long as equivalent-sized forcing functions were employed and the initial blood flow levels were similar between responses. However, faster flow transients could be produced by increasing either of the latter two factors. These findings are consistent with the hypothesis that it is either tissue carbon dioxide tension or cerebral venous carbon dioxide tension that is the important variable regulated by cerebral blood flow. The rate-limiting factor in the response appears to be carbon dioxide delivery rate and not the rate of carbon dioxide diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ACTIVATION OF CARBON DIOXIDE AT A MAGNESIUM (1 00) SURFACE THE ROLE OF OXYGEN TRANSIENTS

X-ray photoelectron and high resolution electron energy loss spectroscopic (XPS-HREELS) studies have shown that the adsorption of carbon dioxide at Mg(100) surfaces at 80K is followed by a dissociative reaction leading to the formation of a metastable surface carbonate above 80K. The formation of a carbonate species is proposed to proceed through oxidation of C0 (g) by an active oxygen su...

متن کامل

Transient Entropy Generation Analysis During Wustite Pellet Reduction to Sponge Iron

The present study carefully examined entropy generation during wustite pellet reduction to sponge iron. The finite volume method was used to solve the governing equations. The grain model was used to simulate the reaction rate. The reactant gases including carbon monoxide and hydrogen were converted to water and carbon dioxide after wustite reduction. Entropy is generated by heat transfer, mass...

متن کامل

Measurement and Analysis of Green Energy Economy Indicators in Iran (Measurement of Carbon Dioxide Emission and its Elasticity)

Achieving sustainable economic growth is one of the most important goals of countries' economic programs and policies in the current era. Along with economic growth, consumption of energy rises. Since fossil fuels provide a major share of the world's energy, increased fuel consumption is an inevitable feature of economic growth.  Continuation of this trend increases greenhouse gas emmissions, n...

متن کامل

Dispersion Coefficients of Supercritical Fluid in Fixed Beds

The axial dispersion coefficient of hexachlorobenzene in supercritical carbon dioxide is investigated in a fixed-bed packed with glass beads. The on-line chromatographic pulse-response experiment is used in order to study the dynamics of a packed column under supercritical conditions. The radial dispersion is assumed negligible because of the packed column geometry. To estimate the axial disper...

متن کامل

Exergy and Energy Analysis of Effective Utilization of Carbon Dioxide in the Gas-to-Methanol Process

Two process models are used to convert carbon dioxide into methanol. These processes have been extended and improved using Aspen Plus simulator software. Both processes are found in the CO2 correction system. In this machine, the desired synthesis gas is produced in a flexible configuration. At the same time, the conversion of CO2 to hydrogen via a copper-based catalyst ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 1985